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The momentum integral method of Klineberg is shown to provide a good descrip- 
tion of the major characteristics of two-dimensional laminar viscous-inviscid 
interactions a t  hypersonic speeds. Surface pressure and heat-transfer-rate 
measurements were made for sharp compression and expansion corners at 
Mach 12.2 and are compared with the theoretical predictions. The agreement 
is found t o  be good for attached, incipient and fully separated flows. 

Some theoretical comparisons between methods based on the Klineberg 
formulation are made which suggest that the full boundary-layer equations are 
well described using integral methods that incorporate the energy equation. It 
is further shown that the properties associated with the stability of the governing 
differential equations are mathematical properties of the analytical model 
and should not be associated with any physical characteristics of the boundary 
layer. 

A correlation of hypersonic, cold-wall, incipient separation data is also pre- 
sented. 

1. Introduction 
In the design of any vehicle for high altitude hypersonic flight, the prediction 

of boundary-layer behaviour is of considerable importance. Of particular interest 
are the strong viscous-inviscid interactions which occw at the wing-flap 
junctions of control surfaces and on intake compression ramps. 

At high Mach numbers, the development of the viscous layer can significantly 
modify the external flow field. The usual method of boundary-layer analysis, 
where viscous effects are considered as a perturbation on an already existing 
flow, is therefore inapplicable. However, the viscous interaction can be described 
by employing the boundary-layer equations together with a ' coupling ' equation 
relating the development of the inner viscous flow to the outer inviscid flow. 
The governing partial differential equations can then be solved using finite- 
difference techniques or can be expressed in integral form and solved as ordinary 
differential equations. 

One of the most successful integral methods is that of Lees & Reeves (1964) 
as extended by Holden (1965) and Klineberg (1968). The method employs the 
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Cohen-Roshotko (1956 a )  similarity solutions to  provide the required relations 
between profile quantities and solves the integral equations of momentum, 
moment of momentum and energy, together with a coupling equation based on 
the integral form of the continuity equation. At low Mach numbers, good agree- 
ment with experiment has been obtained. 

The main objective of this work is to evaluate the Klineberg method in pre- 
dicting cold-wall interactions at Mach 12.2. Comparisons are made for two- 
dimensional laminar flow over sharp compression and expansion corners. Some 
analytic difficulties are also investigated. 

2. Analysis 
2.1. Governing equations 

The governing equations are those of a steady, two-dimensional, compressible, 
laminar boundary layer. By applying the Stewartson ( 1949) transformation, the 
following integral form of these equations can be derived (Klineberg 1968): 

(momentum), (1) xu3 p - B C - -  
dln8* dH dl In Me 

H" +- + (2H + 1 + 8,E) - - ax ax ax Me 8:Re 

(moment of momentum), dlnS," dJ dlnM Ma +- + (3J + 28wT*)-e = BC-- J -  Me 8: Re ax ax ax 

H = -  0, J = -  8: z=-/:Eay, 1 
8: ' 8; ' 8; ue 

R = 28:/0'i [D(q ) ]ZdY ,  a u  P = 8," 

a ay flu, y=o 
&=-&?[-?-(!-)] , 

Y and U are the Stewartson transformed co-ordinate and velocity component 
respectively and the subscript 00 denotes free-stream conditions, e the edge of the 
boundary layer and w the wall. 
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The development of the outer inviscid flow can be related to the boundary- 
layer growth by integrating the continuity equation across the boundary layer. 
This gives as the coupling equation 

where a, is the local surface slope and 0, is the streamline inclination at the edge 
of the boundary layer. 

On transforming to Stewartson co-ordinates the coupling equation becomes 

dlnST dH l+m,  F- +-+- 
dx dx me me 

2 dlnp, B ( l + m e )  tan(O,-a,) -[B+--]-= dx m,(l+m,) Sz 7 (4) 

where m = Y - 1  -M2.  
2 

The streamline inclination 0, at the edge of the boundary layer and the local 
static pressure pe  are related to the Mach number He by means of the model used 
to describe the outer inviscid flow. In  the Klineberg formulation, the Prandtl- 
Meyer rule is used throughout the interaction except across corner shock waves 
where a significant entropy change occurs. This entropy change is considered 
to approximate that across the incident shock in an equivalent impinging shock 
system (Lees & Reeves 1964). 

In  the Klineberg formulation, the required relations between profile quantities 
(H, J, etc.) are provided by the Cohen-Reshotko ( 1 9 5 6 ~ )  similarity solutions. 
Two parameters are used to describe these relations, one representing the 
velocity profile and the other the total enthalpy profile. The velocity profile 
parameter is taken to be the profile quantity H and the total enthalpy profile 
parameter, normalized with respect to S,, is taken to be 

where 7 is the similarity variable of Cohen & Reshotko. Equations (1)-(4) 
thus reduce to a determinate set of equations with dependent variables Me, S:, H 
and b. 

It remains to specify the boundary conditions. However, unlike boundary- 
layer flows with a prescribed pressure gradient, viscous-inviscid interactions 
do not form well-posed initial-value problems. Through the mechanism of viscous 
interaction contained in the coupling equation, the solution is dependent on up- 
stream and downstream boundary conditions (Garvine 1968) and both must be 
specified. The upstream boundary conditions are provided by the strong or weak 
interaction asymptotic flat-plate flow solutions and the downstream boundary 
conditions by the Blasius flow solution. 

28 F L M  63 
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2.2. Stubility of the governing differential equations 

In viscous-inviscid interaction problems the governing differential equations 
are usually unstable to downstream integration, i.e. if some parameter in the 
initial conditions is varied by an arbitrarily small amount each resulting solution 
ultimately diverges from the original one. Hence any given upstream boundary 
conditions will allow an infinite number of possible solutions, each of which 
satisfies a different downstream boundary condition. The instability of the 
governing differential equations thus provides the mechanism for the large-scale 
upstream influence that is observed in many hypersonic boundary-layer flows. 

However, not all of solution space exhibits this unstable behaviour and in 
certain regions the governing differential equations are stable. In  these regions 
the solution is insensitive to downstream boundary conditions and there can be 
no upstream influence. In  some hypersonic boundary-layer flows (e.g . expansions) 
this is not a physically unrealistic situation. However, if the effects of upstream 
influence are to be preserved (e.g. for the compression corner), it  is necessary to 
allow a ‘jump ’ to the unstable state a t  the beginning of interaction (see Klineberg 
1968). 

Sometimes the solution passes smoothly from the unstable state to the stable 
state or vice versa. The transition between states occurs at  the Crocco-Lees 
critical point (Crocco & Lees 1952), a singularity associated with the vanishing 
of the determinant of the governing set of equations. The locus of critical points 
(the ‘ critical boundary ’) thus separates regions exhibiting unstable behaviour 
from those exhibiting stable behaviour. 

2.3. Solution procedure 

The upstream boundary conditions are determined and, depending on the 
stability of the governing differential equations and on the expected degree of 
upstream influence, a ‘jump ’ is or is not applied. Using a fourth-order Runge- 
Kutta method, the governing differential equations are then integrated in the 
downstream direction. If the resulting solution trajectory does not satisfy the 
downstream boundary conditions, a parameter in the upstream boundary con- 
ditions is perturbed and another solution trajectory determined. This parameter 
is then iterated upon until the downstream boundary conditions are satisfied. 

If the Crocco-Lees critical point is encountered during integration, an extrs- 
polation procedure is adopted to allow the solution to pass smoothly through 
this singularity. 

3. Experimental study 
The experimental study was conducted in the Imperial College no. 1 gun tunnel 

using a Mach 12.2 contoured nozzle. The details of this facility have been described 
by Stollery, Maul1 & Belcher (1960). Stagnation conditions po  = 16OOpsia and 
To = 1300°K were used, which gave a free-stream unit Reynolds number 
of 0.87 x lO5h- l .  The useful running time was approximately 20ms. 

Two models were used in the experiments. In  the compression-corner case, 
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the model consisted of a Bin. chord, sharp, flat plate a t  zero incidence, hinged 
at its downstream end to a 5in. chord flap. Tests were made at flap angles of 
So, 10" and 12". The expansion-corner configuration was chosen to avoid any 
trailing-edge shock, which might have induced separation. The model consisted 
of a 5 in. chord, flat plate at  zero incidence with an 8 in. chord, leading-edge flap. 
Flap angles of - 5", - 10' and - 20" were used, providing a wide range of flow 
conditions in the approach to the expansion corners. The span of the models 
was 5in. and the leading-edge thicknesses were about 0.002in. 

The models were instrumented with thin-film, platinum, heat-transfer gauges 
and static-pressure orifices both along and off the centre-line. A description of 
the heat-transfer-rate measuring equipment, which employs an analog network 
to convert the surface temperature signal into the heat-transfer rate, has been 
given by Hunter (1969). Surface pressures were measured using both C.E.C. 
(4/326) 0-10 psia unbonded strain gauges and Pitran (PTM3) 0-25 psid pressure- 
sensitive transistors, connected by tubing to orifices&in. in diameter. The C.E.C. 
(41326) gauge, which has a sensitivity of 4mV/psi, is limited by circuit noise 
at  pressure levels below about 0.05 psia. Measurement of the low pressures was 
made using the Pitran (PTMS) transducers, which have a nominal sensitivity 
of 4VIpsid. 

Focused schlieren photographs were taken at  any instant during the run 
using a conventional single-spark single-pass optical system. Typical photographs 
of the flows over the compression and expansion corners are shown in figures 1 (a)  
and ( b )  (plate 1).  The edge of the white line next to the surface on the schlieren 
photographs is located near the edge of the boundary layer and gives a measure 
of the boundary-layer thickness. 

It is, of course, essential that the centre-line flows be two-dimensional and 
laminar if a direct comparison is to be made with theory. Laminar flow was 
confirmed by the appearance of a well-defined white line in the boundary layer 
together with steady heat-transfer traces. Previous experiments made in the 
same facility have shown that transition to turbulent flow is associated with 
noisy heat-transfer traces. The schlieren photographs, however, indicate weak 
disturbances over the compression flaps. These disturbances may be due to the 
effect of viewing through the thick turbulent mixing layer at  the edge of the jet. 
Two further tests were made to confirm laminar flow. Schlieren photographs were 
taken of the flow over the 12' compression-corner model, a t  a fixed value of wall- 
to-total temperature ratio and a t  two values of the Reynolds number. It was 
seen that the separation point moves upstream as the Reynolds number increases, 
which is in agreement with the trend for a laminar boundary layer found by other 
workers. A Pitot profile was taken downstream of the peak pressure position on 
the 10" flap and the profile was compared with the theoretical zero-pressure- 
gradient result of van Driest (1952). The comparison indicated that the boundary 
layer was laminar. 

No direct tests for two-dimensional flow were made in the present study, 
while there is insufficient information in the literature to infer two-dimensionality 
from other work. However, the necessary condition of uniform spanwise pressure 
and heat-transfer distributions was found to be satisfied. 

28-2 
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For the effect of finite ramp length on the compression-corner flow interactions, 
the present data from the 10' expansion-corner model indicate that the rapid 
expansion associated with the trailing edge propagates about five boundary-layer 
thicknesses upstream. 

4. Comparison between theory and experiment 
For the cases considered enough data are available to provide a unique solu- 

tion to the analytical problem. Hence the method of Klineberg was used in a 
purely predictive oapacity and no matching of theoretical and experimenta,l 
results was made. 
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FIGURE 3. Heat-transfer-rate distribution on the compression-corner model ; M, = 12.2, 
Re, = 0.87 x 106 in.-l, TWITo = 0.22. 0, present experimental data; __ , Klineberg 
method. (a) a = 8". (b)  oc = 10". (0)  a = 12". 

4.1. Compression corner 

The predicted distributions of surface pressure and heat-transfer rate on the 
8 O ,  10' and 12' compression-corner models are compared with the experimental 
data in figures 2 and 3, where the three curves and sets of points are staggered 
vertically. 

The general agreement between theory and experiment is good. In  the flat- 
plate weak viscous interaction region, the experimental data lie slightly above 
the theoretical results. This is probably due to the effect of the small leading-edge 
bluntness, which is not accounted for by the theory. Over the flap, the boundary- 
layer characteristics respond more rapidly to the disturbance generated at  the 
corner than is predicted by the theory. This probably results from the inexact 
nature of the Lees-Reeves shock interaction model. It cannot be assumed that 
the lag results from the propagation of flow disturbances through the boundary 
layer along Mach lines (no such lag is observed, for example, in the expansion- 
corner comparisons). The maximum values of the pressure ratio and heat-transfer 
rate are accurately predicted. The final pressure ratio lies above the inviscid 
value because the stagnation pressure losses through the shock system are not 
as great as those given by inviscid theory (see Georgeff 1972). As shownin figure 2, 
the final pressure ratio can be better estimated by considering the two-shock 
system formed by the leading-edge and corner shock waves (see Bloy 1973). 
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FIGURE 4. Pressure distribution on the expansion-corner model; M, = 12.2, Re, = 0.87 
x lo5 in.-l, TWIT, = 0.22. 0, present experimental data; ~ , Klineberg method; 

, inviscid. (a) a = -5" .  (b)  a = - 10". (c) a = -20'. 

However, the respective shock wave angles must be known (in this case, using 
the measured flow deflexion at the edge of the boundary layer) and thus the tech- 
nique is limited in its predictive capacity. Note that the good description of 
stagnation pressure losses and final pressure ratio provided by the Lees-Reeves 
model of shock wave interaction derives from the approximations made and no8 
from accurate modelling of the overall shock system. 

4.2. Expansion corner 

The predicted distributions of surface pressure and heat-transfer rate on the 5*, 
10" and 20" expansion-corner models are compared with the experimental data in 
figures 4 and 5, where the three curves and sets of points are staggered vertically. 

Again the general agreement with experiment is good. Upstream of the 
corner, the heat-transfer rate is well described except a t  the largest inclination 
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FIGURE 6. Heat-transfcr-rate distribution on the expansion-corner model ; M, = 12.2, 
Re, = 0.87 x lo5 in.-l, T,/ZT0 = 0.22. 0, prosent experimental data; ___ , Klincbcrg 
mothod. (a) a = - 5". ( 6 )  a = - 10". (c) a = - 20". 

angle, where it is overpredicted by approximately 10-15 yo. The small under- 
prediction of the pressure ratio could again result from the effect of the small 
leading-edge bluntness. Downstream of the corner, the agreement with experi- 
ment is very good. No upstream influence is predicted as the governing differen- 
tial equations are stable. This agrees well with experiment, except at  the largest 
inclination angle, where the extent of upstream influence is of the order of 10 
boundary-layer thicknesses. 

In  the Klineberg method, normal pressure gradients are neglected. The good 
agreement between theory and experiment, despite the existence of large normal 
pressure gradients in the real flow, therefore suggests that the eJffect of normal 
pressure gradients within the hypersonic boundary layer is small. 

4.3. Correlation of hypersonic, cold-wall, incipient separation data 

One of the objectives in the study of shock-boundary-layer interactions is the 
prediction of incipient separation. In  two-dimensional flow, this is defined 
as the condition such that there exists one point only in the interaction region 
with zero skin friction. Since skin friction has proved difficult to measure, 
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FIUURE 6. Correlation of hypersonic, cold-wall, incipient separation data. Experimental 
data: A,  Ball & Korkogi (1968); 0,  Needham (1965); 0, Nielsen (see Richards & Enken- 
hus 1970) ; x , present study; O ,  Stollery (unpublished) ; Y, Holden (1967,1971) ; 0, Harvey 
(1968) ; + , Miller et al. (1964). - -, Klineberg method (T,./T, = 0.2) ; symbols with flags 
indicates incident shock data. 

experimenters have resorted to the detection of incipient separation from surface- 
pressure and heat-transfer-rate measurements and from sclilieren photographs. 
The first appearance of an inflexion point in the pressure distribution, il change in 
the heat-transfer distribution from a cusp-like minimum t o  a rounded concave 
minimum, or the appearance of a separation shock have been taken to indicate 
the incipient separation condition. These conclusions have been supported by 
the incipient separation data of Holden (1971). 

Using the Klineberg formulation, the parameters governing viscous-inviscid 
interactions can be shown (Georgeff 1972) to be M,a,, X L  and S,, where L is a 
characteristic length (in this case, the distance from the leading edge to the hinge 
line). It thus follows that the incipient separation condition (denoted by the sub- 
script i) for geometrically similar bodies must be of the form 
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All the available hypersonic, cold-wall, incipient separation data are plotted 
in the above form in figure 6, where they are compared with the theoretical 
results obtained at 8, = - 0-8. As only cold-wall cases were considered, the 
dependence on 8, has been neglected. The incipient separation condition is 
clearly well described by the parameters given above and the agreement between 
theory and experiment is good. 

5. Analytical considerations 
Some of the problems encountered in the analysis of viscous-inviscid inter- 

actions can be resolved by comparing methods based on the Klineberg approach. 

5.1. Description of the methods 

The methods are briefly described below. All use the same model of the flow and 
essentially the same approach, differing only in the set of governing equations 
employed, the assumed relations between profile quantities, and the number of 
parameters left free. 

(i) The method of Lees & Reeves (1964) is similar to the method of Klineberg 
except that the enthalpy profile is considered to be a function of the velocity 
profile. The energy integral equation is therefore not required. Using the Cohen- 
Reshotko similarity solutions to provide the required universal relations, all 
the profile quantities are expressed as functions of the profile parameter H .  
The resulting equations provide a determinate set of equations for the three 
unknowns Me, Sg and H .  

(ii) Stollery & Hankey (1970) modified the method of Klineberg by replacing 
the exact relation between the profile quantities J and H as determined from the 
Cohen-Reshotko similarity solutions by a linear approximation, viz. 

J = KH,  

where K is a constant. The governing equations remain unchanged, although 
they can be simplified. 

(iii) Another modified form of the Klineberg method is obta,ined by replacing 
the moment of momentum integral equation (2) by the momentum equation at 
the wall, which in Stewartson co-ordinates is (Georgeff 1972) 

where 

M I  -- - B C L - ,  d In .Me 
dz Me 6FRe (7) 

As before, the required universal relations are provided by the Cohen-Reshotko 
similarity solutions, and all the profile quantities (including I) are expressed as 
functions of the profile parameters H and b. The resulting equations again pro- 
vide a determinate set of equations in the four unknowns Me, S f ,  H and b. This 
method is closely related to the methods of Cohen & Reshotko (1956b), Bray, 
Gsdd & Woodger (1960) and Curle (1961), although many of the simplifying 
assumptions employed in these earlier methods are dropped. 
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FIGURE 7 .  Critical boundary for hypersonic flow at  8, = - 0.8. -$-, Lees & Reeves (1964) ; 
, Klinebcrg (1968) ; --, Stollery & Hankey (1970) or Georgeff (1972) ; - - -, flat- 

plate solution; A, strong interaction ; 0, weak interaction (Blasius solution) ; - . - - - , 
scparation-point solution. 

At hypersonic speeds the critical boundary associated with each of the 
methods described is independent of Mach number and is plotted in H ,  b space 
in figure 7 for S, = - 0.8. It is observed that the position of the critical boundary 
is strongly dependent on the formulation of the problem. 

The sensitivity of the position of the critical boundary t o  changes in the 
profile quantities is also shown by comparison of the essentially identical 
methods of Klineberg (1968) and Holden (1965). Holden’s use of slightly different 
profile quantity relations (due to a different order of curve fit) shifts the critical 
boundary to the right, so that it lies between the weak interaction solution and the 
strong interaction solution. Hence, if Holden’s formulation is used the flat-plate 
weak interaction solution is unstable whereas if Klineberg’s is used it is stable. 

In  terms of computational efficiency, the methods described are virtually 
indistinguishable. 

6.2. Comparison with experiment 

In  figures 8 ( a )  and ( b ) ,  the methods described are compared with the experimental 
data for the lZo compression corner, It is clear that the Lees-Reeves method, 
where the energy equation is not employed, is inadequate for describing the 
distribution of the heat-transfer coefficient (and similarly the skin-friction co- 
efficient). However, the other modifications make little difference to the solutions 
obtained and all provide good agreement with experiment. In  this case, the 
modifications (ii) and (iii) do not require a jump to initiate interaction nor do they 
encounter the Crocco-Lees critical point, 
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FIGUFCE 8. (a) Pressure and (b)  heat-transfer-rate distribution on compression corner at 
u = 12"; M, = 12.2, Re, = 0.87 x lo5 in,-l, T,/T, = 0.22. - - - -, Lees & Reeves (1964) ; 
-, Klineberg (1968); -- , Stollery & Hankey (1970); --- , Georgeff (1972); 
0,  present experimental data. 

5.3. Physical signijkance of chunges in stability 

Weinbaum & Garvine (1969) demonstrated that the stability of the governing 
differential equations was related to the Mach number profile within the viscous 
layer. The 'throat' station, or critical point, was found to occur where the 
viscous layer changed, in some mean sense, from subsonic t o  supersonic with a 
corresponding change in the stability of the governing differential equations. 
However, the analysis was limited to free shear layers, and normal pressure 
gradients, whichcouldwellinfluence the behaviour of the solution, were neglected. 

The most rigorous analysis of boundary-layer flows that satisfy a zero-slip 
boundary condition has been given by Stewartson & Williams (1969). The boun- 
dary layer was divided into a viscous inner layer and an outer inviscid layer in 
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which the normal pressure gradients were included. It was found that an eigen- 
solution departing towards separation existed under all flow conditions, and no 
behaviour analogous to a change in stability was observed. Hence, although it 
may be possible to attribute some physical significance to changes in stability 
in free shear layers (see also Baum & Denison 1967), this does not appear to  be the 
case in boundary-layer flows. 

The results of the preceding comparisons enforce this view. It was shown that 
the stability is strongly dependent on the choice of the governing differential 
equations and on the assumed relations between profile quantities, whereas the 
solutions obtained were found to be relatively insensitive to the formulation. 
Furthermore, it  was shown that the imposition of a jump does not significantly 
affect the solution except in the vicinity of the jump. These results imply that 
the distinction between stable and unstable states is not a physical characteristic 
of the boundary layer but, on the contrary, is a result of the formulation of the 
problem. 

It thus appears that, in boundary-layer flows, efforts to ascribe physical 
significance to changes in stability are ill founded (see also Stollery & Hankey 
1970; Georgeff 1971). Hence the analogy between stable-unstable (or ‘super- 
critical-subcritical ’) states of the boundary layer and supersonic-subsonic flows 
(Crocco 1955) must be considered weak, at least from a physical standpoint. 
Procedures adopted for passing from the stable to the unstable state [e.g. a 
‘jump’ toseparation(Crocco 1955; Holden 1965), a ‘ jump’ basedontheconserva- 
tion laws (Klineberg 1968) or subjection to a strong negative pressure gradient 
(Reyhner & Fliigge-Lotz 1966)l are, in thelight of the above, purely expedients 
and also lack physical significance. Furthermore, the constraints imposed at  the 
Crocco-Lees critical point and the velocity profile critical point (see Georgeff 
1971) are mathematical in nature and should not be associated with physical 
properties of the boundary layer (cf. Murphy 1969; Shamroth 1969). Even in 
viscous wake flows, where the analysis of Weinbaum & Garvine is perhaps valid, 
care must be taken in ascribing physical significance to the stability of the 
governing equations of any approximate method. 

5.4. Methods of solution 

The choice between approaches exhibiting differences in type (stability) depends 
on the problem and its application. Computational efficiency is enhanced by 
using stable governing differential equations, while accurate modelling of 
upstream influence requires unstable governing differential equations. 

For methods based on the Klineberg formulation, the preceding comparisons 
indicate that the solutions obtained are relatively insensitive to the initial 
stability of the governing differential equations. For these methods differences 
in stability have only a local effect, and all provide a good description of the 
overall properties of viscous interaction phenomena. 
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5.5. ‘ Unhooking’ of the pressure gradient 
If, using the Cohen-Reshotko similarity solutions, the local pressure gradient 
is fully determined by (‘ hooked to ’) the local values of the dependent variables, 
M,, a:, H and b,  then i t  cannot reach zero in the pressure plateau region. This 
was cited by Lees & Reeves (1964) as the major reason for replacing the momen- 
tum equation a t  the wall with the moment of momentum equation. However, 
while ‘ hooking ’ prevents the pressure gradient from reaching zero in the pressure 
plateau region, it does not prevent the pressure gradient from becoming exceed- 
ingly small. Thus it cannot be assumed a priovi that ‘hooking’ of the pressure 
gradient will result in poor agreement with experiment. This is borne out in the 
preceding comparisons. The linearization of the relationship between J and H 
(modification (ii)) and the use ofthe momentum equationat the wall (modification 
(iii)) ‘hooks ’ the pressure gradient to the local values of the dependent variables. 
Yet both methods provide asgood, if not better, agreementwith experiment in the 
pressure plateau region as do the ‘unhooked’ methods of Lees & Reeves and 
Klineberg. 

5.6. Validity of the integral approach 

The preceding comparisons show that it is necessary to employ the energy 
integral equation in order to describe accurately non-adiabatic viscous-inviscid 
interaction phenomena. Otherwise the choice of governing differential equations 
or a set of relations between profile quantities is not critical. This suggests that 
the partial differential equations are well described using integral methods that 
incorporate the energy equation. This conclusion is supported by the results of 
Murphy (1969), where the solutions obtained from methods based on the full 
partial differential equations and on integral methods are shown to be in good 
agreement with one another. The results also put the Klineberg method on firmer 
ground, as conclusive support for the choice of integral equat,ions and profile 
functions is not necessary. 

It is to be noted that many of the early objections raised by Brown & Stewart- 
son (1969) and Stewartson & Williams (1969) to the Klineberg method do not 
arise in the present formulation. The difficulty in passing through separation 
using the profile parameter a is removed by using the profile parameter H .  
Computation, far from being complex, is relatively simple and is not substantially 
more difficult for non-adiabatic flows. Furthermore, any doubts about the drop- 
ping of the momentum equation at  the wall are allayed by the excellent agree- 
ment between the solutions obtained using the method of Klineberg and those 
obtained using the modification (iii). The method is ‘irrational’ in Van Dyke’s 
(1964, p. 2) sense in that it is not exact in any known limit. However, this does 
not deny the utility of such an approach. 

6. Conclusions 

The integral method of Klineberg has been compared with data obtained for 
cold-wall compression and expansion corners at  Mach 12-2. The agreement 
between theory and experiment was found to be good for attached, incipient 
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and fully separated flows. These results, together with the results of earlier 
comparisons at low Mach number, indicate that the method of Klineberg pro- 
vides a good description of the major features of viscous-inviscid interaction 
phenomena a t  both supersonic and hypersonic speeds under adiabatic and non- 
adiabatic wall conditions. 

An extensive theoretical evaluation of the method has been made, thus 
establishing the validity of the integral approach. It has been shown that it 
is necessary to ‘uncouple’ the velocity and enthalpy profile parameters and 
thus to employ the energy integral equation in order to describe accurately non- 
adiabatic viscous interactions. Otherwise the choice of governing differential 
equations or profile quantities is not critical. Contrary to the views of earlier 
investigators, it has been shown that it is not necessary to ‘unhook’ the local 
pressure gradient from the local values of the dependent variables in order to  
obtain good agreement with experiment. It has also been shown that the proper- 
ties associated with the stability of the governing differential equations (i.e. 
‘ subcritical ’ and ‘ supercritical ’ behaviour, the necessity to initiate compressive 
interaction by means of a ‘jump’, and the appearance of the Crocco-Lees critical 
point during integration) are mathematical properties of the analytical model 
and should not be associated with any physical characteristics of the boundary 
layer. 

The authors wish to thank Professor J.L.Stollery for his guidance a,nd 
help during the course of this research. The work was carried out in the Depart- 
ment of Aeronautics at  Imperial College. 
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( 6 )  

FIGURE 1.  Schlieren photograph of the flow over (a)  the 12" compression corner and (b )  
the 5" expansion corner; M ,  = 12.2, Re, = 0.87 x lo5 T,/T, = 0.22. 
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